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Abstract

1. Perennial grasses, such as switchgrass (Panicum virgatum), have emerged as a
promising and reliable feedstock for bioenergy production, offering a potential
alternative to conventional feedstocks (e.g. corn). Incorporating perennial grasses
into agroecosystems can also enhance biodiversity across multiple taxa, including
providing crucial habitat to declining grassland bird populations. Understanding
the habitat value of different bioenergy crops in relation to the surrounding land-
scape will require extensive data to assess the trade-offs between bioenergy pro-
duction and supporting grassland bird populations.

2. We used passive acoustic monitoring (PAM) to compare bird communities in per-
ennial grasslands and croplands in southwestern Nebraska.

3. Species richness for grassland-obligate species and species of conservation need
(SCN) were consistently higher in grasslands than cornfields throughout most of
the monitoring period spanning from March to September. Additionally, we found
that the amount of grassland habitat around monitoring locations significantly
influenced the effectiveness of field types in supporting avian populations. We
found that PAM provided a more robust and detailed account of avian occupancy
of perennial grasslands and croplands compared to point count surveys, but sev-
eral limitations must be considered before the widespread application of this
technology to answer ecological research questions.

4. Practical Implication. Incorporating perennial grasslands into agroecosystems can
not only provide an additional source of bioenergy feedstock but also support
declining avian populations, contributing to the development and sustainability

of the bioeconomy.
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1 | INTRODUCTION

Transitioning to a bioeconomy, where renewable biological resources
replace fossil fuels in the production of energy and other goods, is in-
creasingly important due to risks associated with climate change and
the pressures of a growing global population (Pascoli et al., 2022).
Corn (Zea mays), the predominant feedstock used for ethanol bio-
fuel in the United States, is grown on approximately 12 million acres
of US croplands (Long et al., 2015; Sturchio et al., 2025). Feedstock
refers to the raw biomass resources, such as specific plant sources,
that are used for bioenergy conversion (Long et al., 2015; Pascoli
et al., 2022). Despite its bioenergy potential, corn ethanol remains
controversial due to concerns over its net energy production (Tilman
et al., 2009), water consumption (Wu et al., 2009), effectiveness in
reducing greenhouse gas emissions (Scully et al., 2021) and compe-
tition with food production (Koizumi, 2015). Perennial grasses, such
as switchgrass (Panicum virgatum), have been recognized as a reli-
able feedstock capable of replacing corn on marginal lands to help
meet annual renewable fuel targets (Mitchell et al., 2012, 2016).
Conversion of row-crop fields to perennial grasslands dedicated
to bioenergy can also promote biodiversity and ecological benefits
(Fletcher Jr et al., 2011). However, the extent to which the cultiva-
tion of bioenergy grasslands can align with conservation goals in ag-
ricultural landscapes is not yet fully understood.

The loss of temperate grasslands has been mainly driven by the
expansion of row-crop agriculture (Hoekstra et al., 2005), which has
had cascading effects on grassland-dependent species, specifically
grassland bird populations. Since the 1970s, grassland bird popula-
tions have experienced significant declines (Rosenberg et al., 2019).
Previous studies have indicated that perennial grassland fields could
provide critical habitat for birds, both on breeding grounds (Blank
et al., 2014) and at migratory stopover sites (Robertson et al., 2011)
while simultaneously serving as effective bioenergy feedstocks.
Bioenergy grasslands, such as switchgrass, are typically harvested
once per year, after the avian nesting season, thereby minimizing
disturbances to grassland breeding birds (Roth et al., 2005). Beyond
the timing of harvest, the spatial arrangement of these bioenergy
grasslands is a major factor. Strategic placement of bioenergy grass-
lands affects the ability of producers to deliver biomass to a biomass-
processing plant in a timely manner (Mitchell et al., 2012) and also
contributes to the creation of larger patches of grassland habitat.
This can benefit area-sensitive bird species that rely on extensive
grassland coverage (Robertson et al., 2012). Comparing the habitat
value of different potential bioenergy crops in relation to the grass-
land habitat in the surrounding landscape will require long-term, de-
tailed data to assess the trade-offs between bioenergy production
and supporting declining grassland bird populations.

Production of monoculture grassland feedstocks (e.g. switch-
grass) is fairly uncommon in the Midwest (Robertson et al., 2013).
Therefore, previous research examining bioenergy grassland's abil-
ity to support avian populations has often relied on available peren-
nial grasslands, which are not always representative of monoculture

bioenergy crops. Some studies included multiple switchgrass fields

in their study sites (Blank et al., 2014; Robertson et al., 2011), while
others examined perennial grasslands where switchgrass was the
dominant species, though not planted as a pure switchgrass mono-
culture (Murray et al., 2003; Robertson et al., 2013; Roth et al., 2005).
Perennial grasslands enrolled in the Conservation Reserve Program
(CRP) or managed for other conservation purposes are commonly
used as surrogates for bioenergy grasslands in many research ef-
forts (Blank et al., 2014; Murray et al., 2003; Robertson et al., 2011,
2013; Roth et al., 2005). This may stem from the interest in convert-
ing land currently enrolled in CRP to perennial energy crops, which
could reduce rental payments, lower overall program costs, increase
economic returns for landowners and mitigate GHG emissions (Chen
et al., 2021). Drawing conclusions about the impacts of bioenergy
grasslands on bird populations using only non-monoculture systems
may fail to fully represent future landscapes that include monocul-
ture bioenergy crops. However, until switchgrass or other bioenergy
grasslands become more widely established in the Midwest, infer-
ences about its potential to benefit grassland birds must rely on
studies of other available perennial grasslands.

The application of passive acoustic monitoring (PAM) in terres-
trial ecosystems has rapidly increased over the last few decades
(Sugai et al., 2019). PAM utilizes autonomous recording units (ARUs)
to continuously monitor the vocalization of animals over extended
periods of time (Kahl et al., 2021). This novel method offers sev-
eral advantages over traditional methods (i.e. point count surveys):
PAM is less labor and resource intensive (Sugai et al., 2019), pro-
vides a permanent dataset with higher temporal resolution (Ross
et al., 2023) and minimizes human disturbance or biases (Gibb
et al., 2019; Shonfield & Bayne, 2017). Acoustic monitoring gen-
erates vast amounts of data, driving the growing adoption of au-
tomated methods to handle large datasets in ecological research.
As a result, automated classifiers for analysing large datasets are
often used in conjunction with manual techniques (e.g. listening and
spectrogram visualization) to enhance the likelihood of detecting a
greater number of species in recordings (Ware et al., 2023). One
such classifier, BirdNET, is a convolutional neural network capable
of identifying over 6000 species and quickly gaining prominence in
both ecology and ornithology (Wood & Kahl, 2024). BirdNET rec-
ognizes bird vocalizations from acoustic recordings by segmenting
acoustic files into 3s (s) intervals and providing a quantitative confi-
dence score for each identification, with confidence scores ranging
from O to 1, allowing the output to be filtered based on a selected
confidence threshold (Pérez-Granados, 2023). BirdNET's confi-
dence scores are unitless measures reflecting the model's estimated
certainty in its species-level identifications (Wood & Kahl, 2024).
BirdNET has been applied in several recent avian field studies,
enabling the extraction of novel ecological insights on avian com-
munity and species-specific responses to landscape changes (Cole
et al.,, 2022; Hack et al., 2024; LaGory et al., 2024). Furthermore,
PAM approaches with automatic species classifiers such as BirdNET
have been demonstrated to be comparable to traditional point count
surveys, offering similar levels of accuracy in monitoring grassland
bird populations (Schuster et al., 2024).
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Although the viability of perennial grasslands as avian habitat
compared to row-crop agriculture has been previously explored using
traditional methods (Blank et al., 2014, 2016; Robertson et al., 2011;
Roth et al., 2005), it has not yet been evaluated using modern eco-
logical techniques, such as PAM. Previously, PAM has been used to
understand whether switchgrass cultivars could serve as suitable
habitat for avian species, though this approach has only been applied
to small-scale bioenergy research plots (LaGory et al., 2024). In this
study, we developed a PAM approach to compare bird communities
in perennial grasslands and croplands in southwestern Nebraska.
Our specific objectives were to:

1. Compare the richness of focal species, grassland obligates,
habitat generalists and species of conservation need between
perennial grasslands and croplands.

2. Examine the impact of grassland habitat in the surrounding
landscape on the composition of avian communities.

3. Evaluate the effectiveness of PAM in assessing the suitability of

perennial grasslands as avian habitat.

We hypothesized that grassland obligate species richness will be
greater in perennial grasslands compared to croplands during both
the migration and breeding seasons (Robertson et al., 2013). Given
the potential for habitat generalist species to exploit distributed

Egt:é?éﬁc cological Solutions and Evidence m
cropland systems (Stanton, 2018), we predicted that habitat gen-
eralists would be more dominant in croplands. We also predicted
that an increased proportion of grassland habitat in the surround-
ing landscape would positively influence all avian communities (i.e.
grassland obligates, habitat generalists). Based on findings from
Blank et al., 2014, we hypothesized that perennial grasslands would
more effectively support species of conservation concern than
croplands. Additionally, we hypothesized that PAM would offer
a more comprehensive understanding of how potential bioenergy
grasslands benefit declining avian populations in agricultural sys-
tems compared to traditional methods such as point count surveys
(LaGory et al., 2024).

2 | MATERIALS AND METHODS
2.1 | Studysite

Acoustic monitors were deployed across six pairs of neighbour-
ing row-crop and grassland fields in Hayes and Hitchcock County,
located in southwestern Nebraska (Figure 1). Paired grassland-
cropland sites were located >8km from each other. All of the
selected grasslands were enrolled in CRP, a federal initiative
managed by the US Department of Agriculture (USDA) Natural

N Monitoring Nebraska
A " - —— Locations
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FIGURE 1 The locations of the six paired ARU monitoring sites in southwestern Nebraska from 2022 to 2023.
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Resources Conservation Service (Stubbs, 2014). Small amounts
of switchgrass were present at the study sites; however, it was
not the dominant vegetation type (Table S1), except at one site.
Currently, there are few monoculture grassland fields privately
grown for bioenergy in Nebraska and most are small agronomic
research plots not suited for field-scale research on bird communi-
ties (see Mitchell et al., 2008). As a result, we used low-diversity
grassland fields as a proxy for monoculture bioenergy grasslands.
The sampled row-crop sites included corn (Zea mays) and soybean
(Glycine max) fields with center-pivot irrigation, while one field had
a half-pivot irrigation system.

2.2 | Acoustic monitoring

Between March and September of 2022 and 2023, a total of 12
ARUs (Wildlife Acoustics Song Meter Mini, Maynard, MA, USA)
were installed, with one ARU deployed at each grassland and
cropland field. The ARUs at each paired grassland and cropland
field were positioned with a spacing range of 600-755m between
units. The effective ARU detection distance varies by species (Van
Wilgenburg et al., 2017), but >100m is a reasonable threshold for
sampling entire bird communities (Darras et al., 2018; Hingston
etal., 2018). The ARUs were programmed to capture avian calls from
1h before sunrise to 1h after sunrise and from 1h before sunset to
1h after sunset. These periods were chosen as they coincide with
the times of day when avian vocal activity is most frequent. Within
the grassland study field, one ARU was installed at a randomly
selected location and in the cropland field, the ARUs were deployed
at the pivot center. For a more detailed explanation of the acoustic

monitoring methodology, please review Schuster et al. (2024).

2.3 | Landscape analysis

We superimposed the ARU locations onto the 30x30m 2021
National Land Cover Database (NLCD; Dewitz, 2023) layer in ArcGIS
Pro v3.3. We only used a single year of the NLCD data layer because
it was the most current land cover data available and changes
that may have occurred in the 2-year study period were minimal.
Land-cover classes were reclassified as cropland, grassland, forest,
open water, development and wetlands (Table 1). Hay/pasture
and herbaceous grasslands were combined into one class called
grassland (as in Blank et al., 2014; Wright & Wimberly, 2013). We
used the ‘landscapemetrics’ package (Hesselbarth et al., 2019) in R to
calculate grassland and cropland composition at two spatial scales:
500m and 1km (Cunningham & Johnson, 2006; Blank et al., 2014).

2.4 | Recording analyses

We used BirdNET-Analyzer v2.4 to automatically identify bird spe-
cies from the recordings. We set the system to classify vocalizations

TABLE 1 Reclassified national land cover database (NLCD) land-
cover classes.

Reclassified layer NLCD data type

Cropland Cultivated crop

Grasslands Hay/pasture
Herbaceous grasslands

Forest Deciduous forest
Evergreen forest
Mixed forest
Shrub/scrub

Open water Open water

Development Developed, open space
Developed, low intensity
Developed, medium intensity

Developed, high intensity

Wetlands Woody wetlands
Emergent herbaceous wetland
NODATA Barren land

Perennial snow/ice

from only species detected on eBird (Wood et al., 2011) check-
lists near the center of all paired sites (40.51°N, -101.02°W). The
BirdNET minimum confidence threshold was set to 0.25, and we
kept all remaining settings at the default values (sensitivity =1; over-
lap=0). All BirdNET results were saved as tab-delimited data tables
for later analysis.

2.5 | Focal species selection

We chose 20 focal species previously selected by Schuster
et al. (2024) and filtered BirdNET detections based on the
recommended species-specific confidence (SSC) threshold. Although
several focal species in this recent study had SSCs below 0.25,
we believe that raising the minimum confidence threshold would
improve the overall precision of BirdNET and enable us to draw more
reliable conclusions. We also aimed to include new focal species in
the analysis due to high detection density at the confidence interval
of 0.25. To summarize precision for the additional focal species, we
randomly selected and confirmed 100 5s audio clips to calculate
BirdNET performance at different confidence intervals. An observer
listened to each 5s audio clip, which included 1s before and after
the 3s BirdNET spectrogram, to verify the detection of the focal
species. Precision was then calculated with the following equation:

true positives
true positives + false positives

We categorized true-positives and false-positives based on the
criteria from Cole et al. (2022). Once we calculated precision,
we selected an SSC interval based on if the calculated precision
at a given confidence level was 20.9 (i.e. we chose the lowest
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confidence interval that gave us a precision of 20.9). We used
the ‘dplyr’ and ‘av’ packages in R to organize, extract and review

BirdNET acoustic detections.

2.6 | Calculating species richness

We encountered technological difficulties, leading to several
days of missing audio data throughout the sampling period and
across sites due to strong winds. Therefore, we filtered record-
ings to dates in which ARUs in paired sites (grassland and crop-
land field) collected a full day of recordings (n=8h). After filtering,
we ended up with 838 complete days of recordings in 2022 and
2023 across the six pairs of ARUs. The distribution of complete
days of recordings across pairs and weeks is shown in Figure S1.
We used these complete recordings to compare richness estimates
of focal species, grassland obligates, habitat generalists, and spe-
cies of conservation need between the two land covers. Most focal
species included in the study have been previously documented
in low-diversity CRP fields (Roth et al., 2005), switchgrass fields
(Robertson et al., 2011), intercropped switchgrass in pine planta-
tions (Loman et al., 2014), and during migration seasons in switch-
grass fields (Robertson et al., 2013). Some species were included
based on Uden et al. (2015), which identified species of interest
for evaluation in bioenergy grass production. After filtering the
BirdNET output to the SSC thresholds, we calculated weekly focal
species richness and classified species based on their assigned
breeding biome from Rosenberg et al. (2019; Table 2) so that we
could compare species richness based on breeding habitat.

We also compared the richness of species of conservation
need (SCN) that breed in grassland habitats, based on Bomberger-
Brown et al. (2012), and total species richness from the 2022
BirdNET output. Verification procedures demonstrated in
Schuster et al. (2024) were applied as follows. To confirm the pres-
ence of each avian species at each individual field, we manually
reviewed the 5-s audio clip for the 10 detections with the highest
confidence scores for each species detected. Only species con-
firmed at least once among the 10 recordings at each grassland
and cropland field were included in the species richness calcula-
tion, while those not confirmed at least once were excluded from
the analysis.

2.7 | Statistical analysis

We fit generalized additive mixed models (GAMM) using the ‘gam’
function in the ‘mgcv’ package (Wood, 2011, 2017) to analyse
temporal trends and the impact of grassland habitat in the sur-
rounding landscape on focal species richness in both cropland
and grassland study fields. Given the complexity of most ecosys-
tems, we anticipated nonlinear relationships between variables.
GAMMs are well suited for capturing these complex, nonlinear
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interactions by incorporating multiple regressions with vary-
ing coefficients (Wood, 2017). We developed three hypothesis-
driven nonlinear models, informed by previous research (Blank
et al,, 2014; Herse et al., 2020; Torrenta & Villard, 2017) and
field experience, along with a global model and a null model (see
Table S2). Our GAMM models had a Poisson error structure and
log link function, including the interaction between land cover
(grassland or cropland) and week of recording to assess tempo-
ral trends. Three response variables were tested: average weekly
focal species richness, average weekly grassland obligate species
richness and average weekly habitat generalist species richness.
To limit multicollinearity in the models, we identified landscape
variables with a correlation coefficient >0.7 using a correlation
matrix (Brennan et al., 1986). We did not include cropland com-
position in any of the models because it was negatively correlated
with grassland composition at the 1-km scale (r=-0.96) and 500 m
scale (r=-0.71). Given our interest in evaluating the relationship
between grassland composition and avian richness, we included
two landscape-scale variables in the tested models: grassland
composition within 500m and 1km buffers. To minimize spatial
autocorrelation, we included pair, field (unique field), and year as
random effects. In total, our model set included one interaction
term, three random effects and variations of two landscape varia-
bles, with each variable modeled as a smooth term. As the number
of available recordings varied throughout the weeks, we included
a weight variable, calculated as the proportion of days within each
week that had complete recordings for each pair.

The second-order Akaike's information criteria (AlCc) was used
to compare the weight of evidence in support of each model for
average weekly focal species richness, average weekly grassland
obligates species richness and average weekly habitat general-
ist species richness (Anderson & Burnham, 2002). Models with an
AAICc<2.0units away from the top model were selected and ad-
justed Akaike weight (w,) was calculated for each of the top models.
Using the ‘MuMIn’ package (Barton, 2024) we model-averaged the
top-performing models for each response variable to calculate pa-
rameter estimates and variable weights. We then produced predic-
tive models based on model averages.

Due to the interaction between the week of recording and land
cover, we also compared response variables across land covers by
calculating the difference in weekly richness between the two land
covers. This was done using an analysis of variance model (ANOVA)
followed by a post-hoc Tukey honestly significant difference (HSD)
test. To compare SCN species richness across all monitoring years and
the total species richness from the 2022 acoustic data between crop-
land and grasslands at each pair, we performed two paired Student's
t-tests using the ‘t.test’ function in base R. This approach was chosen
due to the infrequent or low detection rates of species of conservation
need. To understand the arrival and departure times of migrant birds
using our study sites, we visualized their phenology using timeline
graphs created with the package ‘vistime’ (Raabe, 2023). All analyses
were done in R studio v4.4.1 (R Core Team, 2024).
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TABLE 2 The 27 selected focal species, along with their species-specific confidence thresholds and corresponding breeding biomes.

Scientific name

Common name

Species-specific

confidence (SSC) threshold Breeding biome

Spinus tristis American Goldfinch 0.250
Turdus migratorius American Robin 0.250
Hirundo rustica Barn Swallow 0.250
Passerina caerulea Blue Grosbeak 0.250
Cyanocitta cristata Blue Jay 0.250
Quiscalus quiscula Common Grackle 0.250
Chordeiles minor Common Nighthawk 0.250
Spiza americana Dickcissel 0.250
Tyrannus tyrannus Eastern Kingbird 0.250
Ammodramus Grasshopper Sparrow 0.448
savannarum

Eremophila alpestris Horned Lark 0.250
Zenaida macroura Mourning Dove 0.250
Colinus virginianus Northern Bobwhite 0.250
Agelaius phoeniceus Red-winged Blackbird 0.250
Phasianus colchicus Ring-necked Pheasant 0.250
Passerculus Savannah Sparrow 0.250
sandwichensis

Tachycineta bicolor Tree Swallow 0.505
Tyrannus verticalis Western Kingbird 0.250
Sturnella neglecta Western Meadowlark 0.250
Meleagris gallopavo Wild Turkey 0.250
Vireo bellii Bell's Vireo 0.250
Molothrus ater Brown-headed Cowbird 0.250
Athene cunicularia Burrowing Owl 0.250
Spizella pallida Clay-coloured Sparrow 0.250
Charadrius vociferus Killdeer 0.250
Bartramia longicauda Upland Sandpiper 0.250
Pooecetes gramineus Vesper Sparrow 0.800

Forest generalist

Forest generalist
Habitat generalist
Forest generalist
Forest generalist
Habitat generalist
Habitat generalist

Grassland obligate

Grassland obligate

Grassland obligate

Grassland obligate
Habitat generalist
Forest generalist

Habitat generalist

Introduced

Grassland obligate

Habitat generalist
Grassland obligate

Grassland obligate

Forest generalist
Arid lands
Habitat generalist

Grassland obligate

Grassland obligate

Habitat generalist

Grassland obligate

Grassland obligate

Previous research

Roth et al. (2005) and Robertson
et al. (2011)

Robertson et al. (2011)
Robertson et al. (2011)

Loman et al. (2014)

Loman et al. (2014)

Robertson et al. (2013)

Blank et al. (2014) and Uden
et al. (2015)

Robertson et al. (2013) and Uden
et al. (2015)

Roth et al. (2005) and Robertson
et al. (2011)

Robertson et al. (2013)
Robertson et al. (2013)
Uden et al. (2015)

Roth et al. (2005) and Blank
et al. (2014)

Roth et al. (2005), Robertson
et al. (2011) and Uden et al. (2015)

Roth et al. (2005) and Robertson
et al. (2011)

Robertson et al. (2011)

Roth et al. (2005) and Uden
et al. (2015)

Roth et al. (2005)

Robertson et al. (2013) and Uden
et al. (2015)

Robertson et al. (2011) and Robertson
etal. (2012)

Robertson et al. (2013)

Roth et al. (2005) and Uden
et al. (2015)

Robertson et al. (2011)

Note: This table also includes previous studies that have assessed or referenced the responses of focal species to potential bioenergy grasslands and

croplands.

3 | RESULTS

In addition to the species list and performance metrics from Schuster
et al. (2024), we manually verified and calculated precision estimates
for seven additional species, bringing the total to 27 focal species
(Table 2). This group was further divided into grassland obligates
(h=11) and habitat generalists (n=8) based on their breeding bi-
omes. At the 500m scale, the landscape around the ARUs consisted

mostly of croplands (mean=51.12%, range=11.64%-86.61%;
Figure S2A) and grasslands (mean=42.90%, range =9.04%-82.65%;
Figure S2A). The 1km radius around each of the ARUs was primarily
composed of grasslands (mean=50.59%, range=34.40%-75.87%;
Figure S2B) and croplands (mean=42.84%, range =21.52%-62.45%;
Figure S2B). We collected a total of 13,779 h of acoustic recordings
at all monitoring locations (2022: 6144h, 2023: 7635h). BirdNET
made a total of 3,399,887 species detections from these recordings
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at a confidence threshold of 0.25. Of these detections, 3,241,157
(95%) were the 27 focal species (Table 2). The five most frequently
detected species were Grasshopper Sparrow (Ammodramus savan-
narum), Western Meadowlark (Sturnella neglecta), Dickcissel (Spiza
americana), Horned Lark (Eremophila alpestris) and American Robin
(Turdus migratorius). Collectively, these five species accounted for
over 81% of all BirdNET detections.

A total of 94 avian species, including seven grassland-breeding
SCN, were detected and confirmed from the audio data. Three
focal species were classified as SCN and were therefore included
in the SCN richness calculation. We found that grasslands sup-
ported a significantly higher number of grassland-breeding SCN
compared to croplands (A=2.33, p<0.01, t=4.72, 95% confi-
dence interval: 1.06-3.60; Figure S3). When we compared the
total avian species' richness, our results showed that an average
of 17 more species were detected in grasslands compared to crop-
lands in 2022 (p <0.01, t=-6.82, 95% confidence interval: 11.57-
22.59; Figure S3).

3.1 | Focal species

The top-performing model for average weekly focal species rich-
ness was week x cover + grassland_500 + random effects (Pair, Field,
Year; Table 3), followed by the global model (Table S3). In the
grassland and cropland study fields, average weekly focal species
richness peaked during week 19 and 20 (mid-May), then gradu-
ally declined thereafter, with grassland cover at the 500 m scale
having a significant impact on richness (p=0.04). Predicted av-
erage weekly focal species richness followed a concave distribu-
tion, with richness peaking at 35%-45% grassland cover within
a 500-m radius in both field types but decreasing as grassland
cover approached 100% (Figure 2a). In contrast, grassland cover
at the 1-km scale had no significant impact on average weekly
focal species richness in grasslands or croplands (Figure 2b). The
global model showed a significant relationship between the week
of recording and both land covers when predicting focal species
richness (p <0.01). For the full model output for all tested models
(see Table S3); smooth terms and diagnostic plots are provided in
Figures S4-S9.
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3.2 | Grassland obligate species

The global model was the most parsimonious model for grass-
land breeding birds (Table 3) and the second-best model was
week x cover + grassland_500 + random effects (Table S3). Similar to the
focal species richness model, the top-performing model for weekly
average grassland obligates showed peak richness during Weeks 19
and 20 in grassland fields, while in croplands, richness peaked be-
tween Weeks 18 and 24. Grassland composition at the 500m scale
(p<0.01) and 1km scale (p=0.01) had a significant impact on av-
erage weekly grassland breeding bird richness (Figure 2a,b). At the
500m scale, average weekly grassland obligate richness peaked at
around 50% grassland cover and decreased in both field types, al-
though this relationship was more pronounced in grassland study
fields. Whereas, at the 1 km scale, average weekly richness increased
consistently with grassland cover, showing a clear positive relation-
ship that was again stronger in grassland study fields.

3.3 | Habitat generalist species

For average weekly habitat generalist species richness, the top-
performing model was week X cover +grassland_1 +random effects
(Table 3), which showed a significant relationship between richness
and grassland composition at the 1km scale (p<0.01). The next
best model was the weekx cover+grassland_500 +random effects
(Table S3), which also showed a significant relationship between
grassland composition at the 500m scale (p <0.01). Predicted aver-
age weekly habitat generalist's species richness declined at approxi-
mately 40% grassland cover at the 500m scale (Figure 2a) with a
similar negative relationship observed at the 1km scale (Figure 2b).
Except for the null model, all the best-performing models for
average weekly focal species richness, average weekly grassland
obligate species richness and average weekly habitat generalist spe-
cies richness exhibited high R? values (mean=0.61, 0.60 and 0.56,
respectively; Table S3). Based on model-averaged predictions, the
week of recording, in combination with land cover and grassland
composition at both the 500m and 1km scales, was an important
predictor of focal species richness, grassland obligates and habitat

generalists.

TABLE 3 Top-performing models associated with the average weekly focal species richness, grassland breeding bird species richness and
habitat generalist species richness in southwestern Nebraska, 2022-2023.

Avian response

variable Model AlCc Adjusted w; R?
Focal species s(week x cover)*** +s(grassland_500)* + s(pair(“re”)) + s(field(“re”))*** + s(year(“re”)) 5419.38 0.27 0.70
richness

Grassland obligate  s(week x cover)*** + s(grassland_500)*** + s(grassland_1)* + s(pair(“re”)) + s(field(“re”))** + s(year(“re”)) 4122.25 0.42 0.69
species richness

Habitat generalist s(week x cover) *** +s(grassland_1)** + s(pair(“re”))*** + s(field(“re”)) + s(year(“re”)) 3603.15 0.27 0.61

species richness

Note: Asterisks denote significance of variables in a model (*<0.05, **<0.01, ***<0.001).
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FIGURE 2 Relative proportion (predicted richness/total species) in species richness for focal species (n=27), grassland obligates (n=11)
and habitat generalists (n=8) at both scales, with data separated by whether the study field was in grassland or croplands in southwestern
Nebraska, 2022-2023. Panel (a) represents species richness for all groups at the 500 m scale and panel (b) represents species richness for all

groups at the 1 km scale.

The interaction between land cover and week of recording
was significant in all top-performing models for each of the three
avian response variables. Our post-hoc Tukey HSD test revealed
temporal variations in average weekly focal species richness,
with some weeks showing significantly higher richness in grass-
lands, while other weeks exhibited greater richness in croplands
(Figure 3a). Overall, average weekly grassland obligate species
richness was significantly higher in grasslands throughout most of
the sampling period, except during mid-March through early April
(Figure 3b). Average weekly habitat generalist richness was higher
in croplands for the bulk of the season (Figure 3c). Both grassland
obligate and habitat generalist average weekly species richness
shifted between grasslands and croplands during Week 16 (mid-
April). To explain this variability in the difference in richness, we
analysed the timeframe each species was detected on the study
sites across complete days. The timeline for grassland obligations
shows that the two species that were present during the early
weeks were Horned Lark and Western Meadowlark (Figure S10).

Arrival and departure dates for habitat generalists were highly

variable across the sampling years (Figure S11).

4 | DISCUSSION

Rising human populations, growing energy demands and volatile pe-
troleum markets, coupled with risks associated with climate change,
have sparked increasing interest in alternatives to fossil fuels.
Currently, corn is the predominant feedstock for biofuels; however,
perennial grasses, such as switchgrass, have been identified as a
promising alternative due to their capacity to maintain soil structure,
their high yield and nutrient efficiency, and their low requirements
for chemical, energy and water inputs (Fletcher Jr et al., 2011).
Perennial energy crops have the capacity to increase biodiversity at
multiple levels, including positively impacting the diversity of breed-
ing bird populations (Werling et al., 2014). The suitability of poten-
tial bioenergy grasslands to provide habitat for declining grassland
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species richness.

bird species has been studied using traditional methods (Blank
et al., 2014; Robertson et al., 2011; Roth et al., 2005). However,
the prolonged impact of these grassland fields compared to mono-
culture crops throughout both the migration and breeding seasons
has been severely underdeveloped. We compared avian population
metrics between row-crop and low-diversity CRP fields, suitable for
conversion to bioenergy grasslands, using PAM.

Compared to row-crop agriculture, perennial grasslands sup-
ported greater richness of grassland-breeding SCN and total spe-
cies richness (Figure S3), which coincides with previous research
(Blank et al., 2014). We also assessed the impact that grassland
habitat in the surrounding landscape has on average weekly focal
species, grassland obligate species and habitat generalist species
richness in these fields. Based on model averaging, grassland com-
position in the surrounding landscape did have significant impacts
on each of these avian groups. Moderate amounts (20-50%) of
grassland habitat in the surrounding landscape at the 500 m scale
positively affected focal species and grassland obligates in both
grassland and cropland study fields, with the highest richness
of grassland obligates observed in grassland fields that had ap-
proximately 50% grassland cover within this 500m area. Further,

average weekly grassland obligate species richness had a clear
positive relationship with grassland composition at the 1 km scale.
Whereas, increasing grassland habitat within 500m and 1km of
the study sites had a clear negative impact on habitat generalists.
Given the negative correlation between cropland and grassland
composition at both scales (r>0.7), habitat generalist species may
be less impacted by the expansion of row-crop agriculture rela-
tive to grassland obligates and SCN. Our analysis indicated that
grassland composition at smaller spatial scales positively impacts
average weekly focal species and grassland obligate species rich-
ness up to a certain threshold. In contrast, at larger spatial scales,
more grassland habitat is consistently better for grassland special-
ist species. Wildlife responds differently to habitat composition
depending on spatial scales. Specifically, local habitat heteroge-
neity may support a broader array of avian species, while greater
grassland availability at larger scales benefits grassland specialists.
Therefore, integrating perennial bioenergy grasslands on marginal
lands adjacent to row-crops would enhance ecological function in
agricultural landscapes (Werling et al., 2014) by expanding total
grassland cover at broader scales while maintaining landscape di-
versity. Intertwining grassland habitat into agricultural landscapes

85U8017 SUOWILLIOD A0 3(edldde ayy Aq pausenob ake sap e YO 8sn Jo Sejni o} Akeiq18uljUO A1 UO (SUORIPUOD-PUR-SLLIBYWIOD A8 | 1M ARe.d | jou[UO//:SANL) SUORIPUOD Pue SIS | 8y 88S *[5202/0T/T0] Uo ARIqi1auliuo A8 ‘8 [n1T Mepuy Aq 82T0L 6TES-8892/200T 0T/I0p/L0o A 1M Atelqjuljuo'S punosad)/:sdny wouy papeojumoq ‘v ‘SZ0Z ‘6188892



100f14 BRITISH 5 o .
Eggg}ggm _Ecological Solutions and Evidence

to create connections between existing grassland areas not only
expands the overall grassland habitat but also provides significant
benefits to area-sensitive avian species (Blank et al., 2014, 2016),
which includes many grassland birds.

One possible explanation for the concave relationship be-
tween grassland composition and focal species richness, as well
as grassland obligates at the 500-m scale, could be the ambiguous
ecological advantage of irrigation ponding and the availability of
water in croplands. This could benefit grassland birds in a histor-
ically arid region, particularly considering that Hayes County had
42,738 acres of farmland irrigated in 2022 (National Agricultural
Statistics Service, 2022). Research related to birds' responses
to agricultural irrigation is scarce (Cabodevilla et al., 2022), but
it has been suggested that while irrigation can positively impact
species richness on a small scale, it may also negatively affect
bird communities by replacing specialist species with generalists
(Giralt et al., 2021). At the 500 m scale, focal species and grassland
specialists may be taking advantage of water availability at these
sites. However, an increase in irrigated cropland area in this re-
gion would likely boost the presence of habitat generalist species
due to the negative correlation between grassland and cropland
composition. Our findings align with previous research, suggesting
that water availability from irrigation can offer localized benefits
to avian communities. The expansion of irrigated cropland at the
landscape scale would be detrimental to grassland obligate com-
munities, as it replaces the grasslands with habitat that would sup-
port habitat generalist species. Non-irrigated perennial grasslands
near irrigated cropland, on the other hand, could support a wider
diversity of avian species within agroecosystems.

Our PAM framework allowed us to explore temporal patterns in
average weekly avian species richness between two distinct agricul-
tural land uses. Overall, average weekly focal species richness did
not temporally differ between the two land uses, with focal species
richness being significantly higher in grasslands during some weeks
and greater in croplands during others (Figure 3a). Conversely, grass-
land obligates had higher richness in perennial grasslands for most
of the sampling season (Figure 3b). This aligns with previous studies,
which also found that grassland obligate species may benefit most
from the inclusion of perennial grasslands, such as switchgrass, as
opposed to more generalist species (LaGory et al., 2024; Robertson
et al., 2011). Habitat generalists exhibited higher species richness
throughout most of the sampled season in croplands, solidifying
their ability to exploit non-native habitat (Stanton et al., 2018). The
temporal analysis revealed seasonal habitat shifts in both habitat
generalist and grassland obligate species in early to mid-April, which
may be linked to migration timing, breeding, or habitat availability.
Notably, candidate bioenergy feedstocks have been shown to sup-
port avian populations during breeding (Blank et al., 2014) and mi-
gratory seasons (Robertson et al., 2012). Further research is needed
to understand how the timing of management strategies, such as
harvesting and chemical applications, in both traditional row-crops
and bioenergy grasslands may influence the value of these systems
to bird communities across seasons.

SCHUSTER ET AL.

Our inclusion of non-monoculture grassland fields, rather than
switchgrass or other bioenergy grassland plantings, may have in-
fluenced the applicability of our results. Birds are attracted to bio-
energy grasslands that feature higher plant species richness and
greater abundance of forbs compared to monoculture grass fields
(Blank et al., 2014). We used low-diversity CRP grasslands as proxies
for grasslands dedicated to bioenergy production due to the lim-
ited availability of larger, dedicated bioenergy plots, which are typ-
ically confined to small agronomic research areas in Nebraska (see
Mitchell et al., 2008). As such, our results are more applicable for
bioenergy grassland designs that incorporate small amounts of plant
species diversity rather than monoculture grasslands. Feedstocks
with higher plant diversity may have lower conversion potential and
profitability than monoculture feedstocks (Griffith et al., 2011). This
leads to management practices that prioritize increased grass cover,
structural uniformity, and reduced plant diversity, which could po-
tentially impact avian use of these grasslands. Incorporating plant
diversity into bioenergy grasslands could facilitate the coexistence
of avian populations and bioenergy production, but the threshold at
which plant species diversity could significantly reduce conversion
potential must be carefully considered.

Our analysis included several species that have not been pre-
viously examined in studies assessing the habitat value of bioen-
ergy crops. We included two species that are Tier 1 at-risk species
in southwestern Nebraska (i.e. Bell's Vireo and Burrowing Owl;
Bomberger-Brown et al., 2012) and Common Nighthawk. We also
included and classified Western Kingbird (Tyrannus verticalis) as a
grassland obligate species of interest, which may not be applicable
to other environments. In Nebraska, this species migrates to breed
and selects habitats differently across spatial scales, often favouring
areas with widely spaced trees and substantial grass cover (Bergin,
1992). As an insectivore, the Western Kingbird may benefit from in-
creased prey availability in switchgrass or other perennial grasslands
(Werling et al., 2014), which is another reason we classified this spe-
cies as a grassland obligate in the region. The biome classification of
our focal species could have influenced our results, as these species
may respond differently to bioenergy production depending on the
landscape.

PAM offered a more comprehensive evaluation of avian oc-
cupancy of perennial grasslands, enabling a deeper comparison
of this land use with croplands over an extended period. LaGory
et al. (2024) also highlighted the benefits of using PAM over point
counts, as it enabled researchers to assess year-to-year variation in
bird detection, offering valuable insight into how switchgrass ma-
turity may influence avian use. The data collection standardization
and data capacity available with PAM, similarly, allowed for the
documentation of weekly variations in focal species populations
in grassland and croplands. The ability to sample SCN, often over-
looked during point count surveys, provided the opportunity to bet-
ter assess habitat use by these threatened species throughout their
annual cycle. Broader temporal and geographical sampling, along
with reduced observer bias and cost-effectiveness, are key advan-
tages of PAM, making it a valuable method for inclusion in ecological
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research (Sugai et al., 2019). One overlooked benefit of PAM is that
it enables enhanced sampling in rural areas that are regularly under-
represented in traditional monitoring efforts, due to their low pop-
ulation density (similar to McGovern et al., 2024). Sampling in rural
areas with low population density presents logistical and safety chal-
lenges, such as difficulty finding trained personnel and increased risk
to technicians working alone in remote locations without immediate
support in case of an emergency. The application of PAM in rural
agricultural landscapes could enhance our understanding of how mi-
gratory avian species utilize various bioenergy crops and other hab-
itats, while also offering insights into how these patterns may shift
under future bioeconomic scenarios.

There are some limitations to this technology that should be
considered, such as technical malfunctions in the ARU technology
resulting in the loss of acoustic data. Several other researchers have
come across other technological malfunctions or storage-related
failures that have impacted data availability (Dixon et al., 2023; Ware
et al., 2023; Wightman et al., 2022). Anticipating potential data loss
at various stages of PAM is essential for the success of research ap-
plications. Another limitation is the lack of analysis procedures to
estimate avian density or population metrics from sound record-
ings without additional sampling (i.e. point count surveys; Pérez-
Granados & Traba, 2021). While our results revealed differences in
species richness, it is possible that abundance estimates might have
yielded different outcomes, potentially offering a more nuanced un-
derstanding of avian populations in grasslands and croplands. Future
research should focus on testing various approaches that can reduce
bias and resource use, with the aim of improving bird density esti-
mates from acoustic recordings.

The conversion of monoculture row-crops to switchgrass has
demonstrated positive impacts on avian populations through sce-
nario planning. However, these studies lacked field evaluations of
grassland bird communities (Uden et al., 2015). Our findings provide
support for the inclusion of perennial grasslands, potentially used for
bioenergy production in intensified cultivated landscapes, with the
goal of benefiting avian populations. Most notably, including peren-
nial grasslands on marginal acres of cropland could benefit SCN that
breed in grasslands (Robertson et al., 2012). However, grasslands
dedicated to bioenergy production may lack the vegetative diversity
necessary to support avian populations. As a result, replacing highly
diverse CRP fields with monoculture bioenergy grasslands, without
additions of other grassland habitat in the landscape, could have det-
rimental consequences for bird populations (Uden et al., 2015). By
comparing avian communities in grasslands and adjacent croplands,
our results demonstrate the season-long benefits of integrating these
bioenergy grasslands into agricultural systems. Developing and uti-
lizing a diverse range of feedstocks is important to sustainably meet
biorefinery supply demands, but this can only be achieved through
policies and strategies that prioritize environmental sustainability and
benefits (Long et al., 2015). Incorporating switchgrass and other pe-
rennial energy crops as novel feedstocks, alongside traditional crops
like corn, will enable the comprehensive advancement of a viable bio-
economy without further degrading avian populations.
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5 | CONCLUSION

Incorporating bioenergy grasslands into agricultural landscapes
could benefit avian populations, especially if these grasslands
strategically replace intensively cultivated annual row crops such
as corn. This bioenergy conversion could be particularly beneficial
to SCN and other grassland-breeding avian species. PAM allowed
us to uncover important temporal relationships in avian community
responses to this land use conversion scenario. As the bioeconomy
continues to evolve and reshape agricultural landscapes, it is
essential to consider the environmental benefits of these changes to
ensure long-term sustainability.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Table S1. Program type and description of Conservation Reserve
Program (CRP) enrollment for each grassland study site as well as
dominant vegetation at each site.

Table S2. The three-hypothesis driven models.
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Table S3. Full model output for average weekly focal species,
grassland obligate species and habitat generalist species richness.
Figure S1. Distribution of complete days of recordings each week by
pair which include both a grassland and cropland site with full (8h)
of recordings.

Figure S2. Bar graph depicting composition of grasslands and
croplands in the surrounding landscape around acoustic monitoring
locations, measured at two spatial scales: 500 and 1km.

Figure S3. Boxplot results from two-paired Student's t-tests
comparing total species richness and species of conservation need
(SCN) richness between croplands and grasslands.

Figure S4. Smooth term plots for top-performing model for
predicting average weekly focal species richness in southwestern
Nebraska, 2022-2023.

Figure S5. Diagnostic plots for top-performing model for average
weekly focal species richness.

Figure S6. Smooth term plots for top-performing model for
predicting average weekly grassland obligate species richness in
southwestern Nebraska, 2022-2023.

Figure S7. Diagnostic plots for top-performing model for average
weekly grassland obligate species richness.

Figure S8. Smooth term plots for top-performing model for
predicting average weekly habitat generalist species richness in
southwestern Nebraska, 2022-2023.
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Figure S9. Diagnostic plots for top-performing model for average
weekly grassland obligate species richness.

Figure S10. Timeline of the first and last detections of grassland
obligate focal species in 2022-2023 across both grassland and
cropland habitats. Green horizontal line represents ARU deployment
and the red horizontal line represents ARU removal during both
years.

Figure S11. Timeline of the first and last detections of habitat
generalists focal species in 2022-2023 across both grassland and
cropland habitats. Green horizontal line represents ARU deployment
and the red horizontal line represents ARU removal during both
years.

Figure S12. Acoustic monitor installed in a grassland field.

Figure S13. Acoustic monitor installed in a cropland field.
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