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Abstract
1.	 Perennial grasses, such as switchgrass (Panicum virgatum), have emerged as a 

promising and reliable feedstock for bioenergy production, offering a potential 
alternative to conventional feedstocks (e.g. corn). Incorporating perennial grasses 
into agroecosystems can also enhance biodiversity across multiple taxa, including 
providing crucial habitat to declining grassland bird populations. Understanding 
the habitat value of different bioenergy crops in relation to the surrounding land-
scape will require extensive data to assess the trade-offs between bioenergy pro-
duction and supporting grassland bird populations.

2.	 We used passive acoustic monitoring (PAM) to compare bird communities in per-
ennial grasslands and croplands in southwestern Nebraska.

3.	 Species richness for grassland-obligate species and species of conservation need 
(SCN) were consistently higher in grasslands than cornfields throughout most of 
the monitoring period spanning from March to September. Additionally, we found 
that the amount of grassland habitat around monitoring locations significantly 
influenced the effectiveness of field types in supporting avian populations. We 
found that PAM provided a more robust and detailed account of avian occupancy 
of perennial grasslands and croplands compared to point count surveys, but sev-
eral limitations must be considered before the widespread application of this 
technology to answer ecological research questions.

4.	 Practical Implication. Incorporating perennial grasslands into agroecosystems can 
not only provide an additional source of bioenergy feedstock but also support 
declining avian populations, contributing to the development and sustainability 
of the bioeconomy.

K E Y W O R D S
bioeconomy, bioenergy, grassland birds, ornithology, passive acoustic monitoring, perennial 
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1  |  INTRODUC TION

Transitioning to a bioeconomy, where renewable biological resources 
replace fossil fuels in the production of energy and other goods, is in-
creasingly important due to risks associated with climate change and 
the pressures of a growing global population (Pascoli et al., 2022). 
Corn (Zea mays), the predominant feedstock used for ethanol bio-
fuel in the United States, is grown on approximately 12 million acres 
of US croplands (Long et al., 2015; Sturchio et al., 2025). Feedstock 
refers to the raw biomass resources, such as specific plant sources, 
that are used for bioenergy conversion (Long et  al.,  2015; Pascoli 
et al., 2022). Despite its bioenergy potential, corn ethanol remains 
controversial due to concerns over its net energy production (Tilman 
et al., 2009), water consumption (Wu et al., 2009), effectiveness in 
reducing greenhouse gas emissions (Scully et al., 2021) and compe-
tition with food production (Koizumi, 2015). Perennial grasses, such 
as switchgrass (Panicum virgatum), have been recognized as a reli-
able feedstock capable of replacing corn on marginal lands to help 
meet annual renewable fuel targets (Mitchell et  al.,  2012, 2016). 
Conversion of row-crop fields to perennial grasslands dedicated 
to bioenergy can also promote biodiversity and ecological benefits 
(Fletcher Jr et al., 2011). However, the extent to which the cultiva-
tion of bioenergy grasslands can align with conservation goals in ag-
ricultural landscapes is not yet fully understood.

The loss of temperate grasslands has been mainly driven by the 
expansion of row-crop agriculture (Hoekstra et al., 2005), which has 
had cascading effects on grassland-dependent species, specifically 
grassland bird populations. Since the 1970s, grassland bird popula-
tions have experienced significant declines (Rosenberg et al., 2019). 
Previous studies have indicated that perennial grassland fields could 
provide critical habitat for birds, both on breeding grounds (Blank 
et al., 2014) and at migratory stopover sites (Robertson et al., 2011) 
while simultaneously serving as effective bioenergy feedstocks. 
Bioenergy grasslands, such as switchgrass, are typically harvested 
once per year, after the avian nesting season, thereby minimizing 
disturbances to grassland breeding birds (Roth et al., 2005). Beyond 
the timing of harvest, the spatial arrangement of these bioenergy 
grasslands is a major factor. Strategic placement of bioenergy grass-
lands affects the ability of producers to deliver biomass to a biomass-
processing plant in a timely manner (Mitchell et al., 2012) and also 
contributes to the creation of larger patches of grassland habitat. 
This can benefit area-sensitive bird species that rely on extensive 
grassland coverage (Robertson et al., 2012). Comparing the habitat 
value of different potential bioenergy crops in relation to the grass-
land habitat in the surrounding landscape will require long-term, de-
tailed data to assess the trade-offs between bioenergy production 
and supporting declining grassland bird populations.

Production of monoculture grassland feedstocks (e.g. switch-
grass) is fairly uncommon in the Midwest (Robertson et al., 2013). 
Therefore, previous research examining bioenergy grassland's abil-
ity to support avian populations has often relied on available peren-
nial grasslands, which are not always representative of monoculture 
bioenergy crops. Some studies included multiple switchgrass fields 

in their study sites (Blank et al., 2014; Robertson et al., 2011), while 
others examined perennial grasslands where switchgrass was the 
dominant species, though not planted as a pure switchgrass mono-
culture (Murray et al., 2003; Robertson et al., 2013; Roth et al., 2005). 
Perennial grasslands enrolled in the Conservation Reserve Program 
(CRP) or managed for other conservation purposes are commonly 
used as surrogates for bioenergy grasslands in many research ef-
forts (Blank et al., 2014; Murray et al., 2003; Robertson et al., 2011, 
2013; Roth et al., 2005). This may stem from the interest in convert-
ing land currently enrolled in CRP to perennial energy crops, which 
could reduce rental payments, lower overall program costs, increase 
economic returns for landowners and mitigate GHG emissions (Chen 
et al., 2021). Drawing conclusions about the impacts of bioenergy 
grasslands on bird populations using only non-monoculture systems 
may fail to fully represent future landscapes that include monocul-
ture bioenergy crops. However, until switchgrass or other bioenergy 
grasslands become more widely established in the Midwest, infer-
ences about its potential to benefit grassland birds must rely on 
studies of other available perennial grasslands.

The application of passive acoustic monitoring (PAM) in terres-
trial ecosystems has rapidly increased over the last few decades 
(Sugai et al., 2019). PAM utilizes autonomous recording units (ARUs) 
to continuously monitor the vocalization of animals over extended 
periods of time (Kahl et  al.,  2021). This novel method offers sev-
eral advantages over traditional methods (i.e. point count surveys): 
PAM is less labor and resource intensive (Sugai et  al., 2019), pro-
vides a permanent dataset with higher temporal resolution (Ross 
et  al.,  2023) and minimizes human disturbance or biases (Gibb 
et  al.,  2019; Shonfield & Bayne, 2017). Acoustic monitoring gen-
erates vast amounts of data, driving the growing adoption of au-
tomated methods to handle large datasets in ecological research. 
As a result, automated classifiers for analysing large datasets are 
often used in conjunction with manual techniques (e.g. listening and 
spectrogram visualization) to enhance the likelihood of detecting a 
greater number of species in recordings (Ware et  al.,  2023). One 
such classifier, BirdNET, is a convolutional neural network capable 
of identifying over 6000 species and quickly gaining prominence in 
both ecology and ornithology (Wood & Kahl, 2024). BirdNET rec-
ognizes bird vocalizations from acoustic recordings by segmenting 
acoustic files into 3 s (s) intervals and providing a quantitative confi-
dence score for each identification, with confidence scores ranging 
from 0 to 1, allowing the output to be filtered based on a selected 
confidence threshold (Pérez-Granados,  2023). BirdNET's confi-
dence scores are unitless measures reflecting the model's estimated 
certainty in its species-level identifications (Wood & Kahl,  2024). 
BirdNET has been applied in several recent avian field studies, 
enabling the extraction of novel ecological insights on avian com-
munity and species-specific responses to landscape changes (Cole 
et al., 2022; Hack et al., 2024; LaGory et al., 2024). Furthermore, 
PAM approaches with automatic species classifiers such as BirdNET 
have been demonstrated to be comparable to traditional point count 
surveys, offering similar levels of accuracy in monitoring grassland 
bird populations (Schuster et al., 2024).
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Although the viability of perennial grasslands as avian habitat 
compared to row-crop agriculture has been previously explored using 
traditional methods (Blank et al., 2014, 2016; Robertson et al., 2011; 
Roth et al., 2005), it has not yet been evaluated using modern eco-
logical techniques, such as PAM. Previously, PAM has been used to 
understand whether switchgrass cultivars could serve as suitable 
habitat for avian species, though this approach has only been applied 
to small-scale bioenergy research plots (LaGory et al., 2024). In this 
study, we developed a PAM approach to compare bird communities 
in perennial grasslands and croplands in southwestern Nebraska. 
Our specific objectives were to:

1.	 Compare the richness of focal species, grassland obligates, 
habitat generalists and species of conservation need between 
perennial grasslands and croplands.

2.	 Examine the impact of grassland habitat in the surrounding 
landscape on the composition of avian communities.

3.	 Evaluate the effectiveness of PAM in assessing the suitability of 
perennial grasslands as avian habitat.

We hypothesized that grassland obligate species richness will be 
greater in perennial grasslands compared to croplands during both 
the migration and breeding seasons (Robertson et al., 2013). Given 
the potential for habitat generalist species to exploit distributed 

cropland systems (Stanton, 2018), we predicted that habitat gen-
eralists would be more dominant in croplands. We also predicted 
that an increased proportion of grassland habitat in the surround-
ing landscape would positively influence all avian communities (i.e. 
grassland obligates, habitat generalists). Based on findings from 
Blank et al., 2014, we hypothesized that perennial grasslands would 
more effectively support species of conservation concern than 
croplands. Additionally, we hypothesized that PAM would offer 
a more comprehensive understanding of how potential bioenergy 
grasslands benefit declining avian populations in agricultural sys-
tems compared to traditional methods such as point count surveys 
(LaGory et al., 2024).

2  |  MATERIAL S AND METHODS

2.1  |  Study site

Acoustic monitors were deployed across six pairs of neighbour-
ing row-crop and grassland fields in Hayes and Hitchcock County, 
located in southwestern Nebraska (Figure  1). Paired grassland-
cropland sites were located >8 km from each other. All of the 
selected grasslands were enrolled in CRP, a federal initiative 
managed by the US Department of Agriculture (USDA) Natural 

F I G U R E  1 The locations of the six paired ARU monitoring sites in southwestern Nebraska from 2022 to 2023.
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Resources Conservation Service (Stubbs,  2014). Small amounts 
of switchgrass were present at the study sites; however, it was 
not the dominant vegetation type (Table S1), except at one site. 
Currently, there are few monoculture grassland fields privately 
grown for bioenergy in Nebraska and most are small agronomic 
research plots not suited for field-scale research on bird communi-
ties (see Mitchell et al., 2008). As a result, we used low-diversity 
grassland fields as a proxy for monoculture bioenergy grasslands. 
The sampled row-crop sites included corn (Zea mays) and soybean 
(Glycine max) fields with center-pivot irrigation, while one field had 
a half-pivot irrigation system.

2.2  |  Acoustic monitoring

Between March and September of 2022 and 2023, a total of 12 
ARUs (Wildlife Acoustics Song Meter Mini, Maynard, MA, USA) 
were installed, with one ARU deployed at each grassland and 
cropland field. The ARUs at each paired grassland and cropland 
field were positioned with a spacing range of 600–755 m between 
units. The effective ARU detection distance varies by species (Van 
Wilgenburg et al., 2017), but >100 m is a reasonable threshold for 
sampling entire bird communities (Darras et  al.,  2018; Hingston 
et al., 2018). The ARUs were programmed to capture avian calls from 
1 h before sunrise to 1 h after sunrise and from 1 h before sunset to 
1 h after sunset. These periods were chosen as they coincide with 
the times of day when avian vocal activity is most frequent. Within 
the grassland study field, one ARU was installed at a randomly 
selected location and in the cropland field, the ARUs were deployed 
at the pivot center. For a more detailed explanation of the acoustic 
monitoring methodology, please review Schuster et al. (2024).

2.3  |  Landscape analysis

We superimposed the ARU locations onto the 30 × 30 m 2021 
National Land Cover Database (NLCD; Dewitz, 2023) layer in ArcGIS 
Pro v3.3. We only used a single year of the NLCD data layer because 
it was the most current land cover data available and changes 
that may have occurred in the 2-year study period were minimal. 
Land-cover classes were reclassified as cropland, grassland, forest, 
open water, development and wetlands (Table  1). Hay/pasture 
and herbaceous grasslands were combined into one class called 
grassland (as in Blank et al., 2014; Wright & Wimberly, 2013). We 
used the ‘landscapemetrics’ package (Hesselbarth et al., 2019) in R to 
calculate grassland and cropland composition at two spatial scales: 
500 m and 1 km (Cunningham & Johnson, 2006; Blank et al., 2014).

2.4  |  Recording analyses

We used BirdNET-Analyzer v2.4 to automatically identify bird spe-
cies from the recordings. We set the system to classify vocalizations 

from only species detected on eBird (Wood et  al.,  2011) check-
lists near the center of all paired sites (40.51° N, −101.02° W). The 
BirdNET minimum confidence threshold was set to 0.25, and we 
kept all remaining settings at the default values (sensitivity = 1; over-
lap = 0). All BirdNET results were saved as tab-delimited data tables 
for later analysis.

2.5  |  Focal species selection

We chose 20 focal species previously selected by Schuster 
et  al.  (2024) and filtered BirdNET detections based on the 
recommended species-specific confidence (SSC) threshold. Although 
several focal species in this recent study had SSCs below 0.25, 
we believe that raising the minimum confidence threshold would 
improve the overall precision of BirdNET and enable us to draw more 
reliable conclusions. We also aimed to include new focal species in 
the analysis due to high detection density at the confidence interval 
of 0.25. To summarize precision for the additional focal species, we 
randomly selected and confirmed 100 5 s audio clips to calculate 
BirdNET performance at different confidence intervals. An observer 
listened to each 5 s audio clip, which included 1 s before and after 
the 3 s BirdNET spectrogram, to verify the detection of the focal 
species. Precision was then calculated with the following equation:

We categorized true-positives and false-positives based on the 
criteria from Cole et  al.  (2022). Once we calculated precision, 
we selected an SSC interval based on if the calculated precision 
at a given confidence level was ≥0.9 (i.e. we chose the lowest 

true positives

true positives + false positives

TA B L E  1 Reclassified national land cover database (NLCD) land-
cover classes.

Reclassified layer NLCD data type

Cropland Cultivated crop

Grasslands Hay/pasture

Herbaceous grasslands

Forest Deciduous forest

Evergreen forest

Mixed forest

Shrub/scrub

Open water Open water

Development Developed, open space

Developed, low intensity

Developed, medium intensity

Developed, high intensity

Wetlands Woody wetlands

Emergent herbaceous wetland

NODATA Barren land

Perennial snow/ice
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confidence interval that gave us a precision of ≥0.9). We used 
the ‘dplyr’ and ‘av’ packages in R to organize, extract and review 
BirdNET acoustic detections.

2.6  |  Calculating species richness

We encountered technological difficulties, leading to several 
days of missing audio data throughout the sampling period and 
across sites due to strong winds. Therefore, we filtered record-
ings to dates in which ARUs in paired sites (grassland and crop-
land field) collected a full day of recordings (n = 8 h). After filtering, 
we ended up with 838 complete days of recordings in 2022 and 
2023 across the six pairs of ARUs. The distribution of complete 
days of recordings across pairs and weeks is shown in Figure S1. 
We used these complete recordings to compare richness estimates 
of focal species, grassland obligates, habitat generalists, and spe-
cies of conservation need between the two land covers. Most focal 
species included in the study have been previously documented 
in low-diversity CRP fields (Roth et  al.,  2005), switchgrass fields 
(Robertson et al., 2011), intercropped switchgrass in pine planta-
tions (Loman et al., 2014), and during migration seasons in switch-
grass fields (Robertson et al., 2013). Some species were included 
based on Uden et  al.  (2015), which identified species of interest 
for evaluation in bioenergy grass production. After filtering the 
BirdNET output to the SSC thresholds, we calculated weekly focal 
species richness and classified species based on their assigned 
breeding biome from Rosenberg et al.  (2019; Table 2) so that we 
could compare species richness based on breeding habitat.

We also compared the richness of species of conservation 
need (SCN) that breed in grassland habitats, based on Bomberger-
Brown et  al.  (2012), and total species richness from the 2022 
BirdNET output. Verification procedures demonstrated in 
Schuster et al. (2024) were applied as follows. To confirm the pres-
ence of each avian species at each individual field, we manually 
reviewed the 5-s audio clip for the 10 detections with the highest 
confidence scores for each species detected. Only species con-
firmed at least once among the 10 recordings at each grassland 
and cropland field were included in the species richness calcula-
tion, while those not confirmed at least once were excluded from 
the analysis.

2.7  |  Statistical analysis

We fit generalized additive mixed models (GAMM) using the ‘gam’ 
function in the ‘mgcv’ package (Wood,  2011, 2017) to analyse 
temporal trends and the impact of grassland habitat in the sur-
rounding landscape on focal species richness in both cropland 
and grassland study fields. Given the complexity of most ecosys-
tems, we anticipated nonlinear relationships between variables. 
GAMMs are well suited for capturing these complex, nonlinear 

interactions by incorporating multiple regressions with vary-
ing coefficients (Wood,  2017). We developed three hypothesis-
driven nonlinear models, informed by previous research (Blank 
et  al.,  2014; Herse et  al.,  2020; Torrenta & Villard,  2017) and 
field experience, along with a global model and a null model (see 
Table S2). Our GAMM models had a Poisson error structure and 
log link function, including the interaction between land cover 
(grassland or cropland) and week of recording to assess tempo-
ral trends. Three response variables were tested: average weekly 
focal species richness, average weekly grassland obligate species 
richness and average weekly habitat generalist species richness. 
To limit multicollinearity in the models, we identified landscape 
variables with a correlation coefficient >0.7 using a correlation 
matrix (Brennan et al., 1986). We did not include cropland com-
position in any of the models because it was negatively correlated 
with grassland composition at the 1-km scale (r = −0.96) and 500 m 
scale (r = −0.71). Given our interest in evaluating the relationship 
between grassland composition and avian richness, we included 
two landscape-scale variables in the tested models: grassland 
composition within 500 m and 1 km buffers. To minimize spatial 
autocorrelation, we included pair, field (unique field), and year as 
random effects. In total, our model set included one interaction 
term, three random effects and variations of two landscape varia-
bles, with each variable modeled as a smooth term. As the number 
of available recordings varied throughout the weeks, we included 
a weight variable, calculated as the proportion of days within each 
week that had complete recordings for each pair.

The second-order Akaike's information criteria (AICc) was used 
to compare the weight of evidence in support of each model for 
average weekly focal species richness, average weekly grassland 
obligates species richness and average weekly habitat general-
ist species richness (Anderson & Burnham, 2002). Models with an 
ΔAICc < 2.0 units away from the top model were selected and ad-
justed Akaike weight (wi) was calculated for each of the top models. 
Using the ‘MuMIn’ package (Bartoń, 2024) we model-averaged the 
top-performing models for each response variable to calculate pa-
rameter estimates and variable weights. We then produced predic-
tive models based on model averages.

Due to the interaction between the week of recording and land 
cover, we also compared response variables across land covers by 
calculating the difference in weekly richness between the two land 
covers. This was done using an analysis of variance model (ANOVA) 
followed by a post-hoc Tukey honestly significant difference (HSD) 
test. To compare SCN species richness across all monitoring years and 
the total species richness from the 2022 acoustic data between crop-
land and grasslands at each pair, we performed two paired Student's 
t-tests using the ‘t.test’ function in base R. This approach was chosen 
due to the infrequent or low detection rates of species of conservation 
need. To understand the arrival and departure times of migrant birds 
using our study sites, we visualized their phenology using timeline 
graphs created with the package ‘vistime’ (Raabe, 2023). All analyses 
were done in R studio v4.4.1 (R Core Team, 2024).
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3 | RESULTS

In addition to the species list and performance metrics from Schuster 
et al. (2024), we manually verified and calculated precision estimates 
for seven additional species, bringing the total to 27 focal species 
(Table  2). This group was further divided into grassland obligates 
(n = 11) and habitat generalists (n = 8) based on their breeding bi-
omes. At the 500 m scale, the landscape around the ARUs consisted 

mostly of croplands (mean = 51.12%, range = 11.64%–86.61%; 
Figure S2A) and grasslands (mean = 42.90%, range = 9.04%–82.65%; 
Figure S2A). The 1 km radius around each of the ARUs was primarily 
composed of grasslands (mean = 50.59%, range = 34.40%–75.87%; 
Figure S2B) and croplands (mean = 42.84%, range = 21.52%–62.45%; 
Figure S2B). We collected a total of 13,779 h of acoustic recordings 
at all monitoring locations (2022: 6144 h, 2023: 7635 h). BirdNET 
made a total of 3,399,887 species detections from these recordings 

TA B L E  2 The 27 selected focal species, along with their species-specific confidence thresholds and corresponding breeding biomes.

Scientific name Common name
Species-specific 
confidence (SSC) threshold Breeding biome Previous research

Spinus tristis American Goldfinch 0.250 Forest generalist Roth et al. (2005) and Robertson 
et al. (2011)

Turdus migratorius American Robin 0.250 Forest generalist Robertson et al. (2011)

Hirundo rustica Barn Swallow 0.250 Habitat generalist Robertson et al. (2011)

Passerina caerulea Blue Grosbeak 0.250 Forest generalist Loman et al. (2014)

Cyanocitta cristata Blue Jay 0.250 Forest generalist Loman et al. (2014)

Quiscalus quiscula Common Grackle 0.250 Habitat generalist Robertson et al. (2013)

Chordeiles minor Common Nighthawk 0.250 Habitat generalist —

Spiza americana Dickcissel 0.250 Grassland obligate Blank et al. (2014) and Uden 
et al. (2015)

Tyrannus tyrannus Eastern Kingbird 0.250 Grassland obligate Robertson et al. (2013) and Uden 
et al. (2015)

Ammodramus 
savannarum

Grasshopper Sparrow 0.448 Grassland obligate Roth et al. (2005) and Robertson 
et al. (2011)

Eremophila alpestris Horned Lark 0.250 Grassland obligate Robertson et al. (2013)

Zenaida macroura Mourning Dove 0.250 Habitat generalist Robertson et al. (2013)

Colinus virginianus Northern Bobwhite 0.250 Forest generalist Uden et al. (2015)

Agelaius phoeniceus Red-winged Blackbird 0.250 Habitat generalist Roth et al. (2005) and Blank 
et al. (2014)

Phasianus colchicus Ring-necked Pheasant 0.250 Introduced Roth et al. (2005), Robertson 
et al. (2011) and Uden et al. (2015)

Passerculus 
sandwichensis

Savannah Sparrow 0.250 Grassland obligate Roth et al. (2005) and Robertson 
et al. (2011)

Tachycineta bicolor Tree Swallow 0.505 Habitat generalist Robertson et al. (2011)

Tyrannus verticalis Western Kingbird 0.250 Grassland obligate —

Sturnella neglecta Western Meadowlark 0.250 Grassland obligate Roth et al. (2005) and Uden 
et al. (2015)

Meleagris gallopavo Wild Turkey 0.250 Forest generalist Roth et al. (2005)

Vireo bellii Bell's Vireo 0.250 Arid lands —

Molothrus ater Brown-headed Cowbird 0.250 Habitat generalist Robertson et al. (2013) and Uden 
et al. (2015)

Athene cunicularia Burrowing Owl 0.250 Grassland obligate —

Spizella pallida Clay-coloured Sparrow 0.250 Grassland obligate Robertson et al. (2011) and Robertson 
et al. (2012)

Charadrius vociferus Killdeer 0.250 Habitat generalist Robertson et al. (2013)

Bartramia longicauda Upland Sandpiper 0.250 Grassland obligate Roth et al. (2005) and Uden 
et al. (2015)

Pooecetes gramineus Vesper Sparrow 0.800 Grassland obligate Robertson et al. (2011)

Note: This table also includes previous studies that have assessed or referenced the responses of focal species to potential bioenergy grasslands and 
croplands.
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at a confidence threshold of 0.25. Of these detections, 3,241,157 
(95%) were the 27 focal species (Table 2). The five most frequently 
detected species were Grasshopper Sparrow (Ammodramus savan-
narum), Western Meadowlark (Sturnella neglecta), Dickcissel (Spiza 
americana), Horned Lark (Eremophila alpestris) and American Robin 
(Turdus migratorius). Collectively, these five species accounted for 
over 81% of all BirdNET detections.

A total of 94 avian species, including seven grassland-breeding 
SCN, were detected and confirmed from the audio data. Three 
focal species were classified as SCN and were therefore included 
in the SCN richness calculation. We found that grasslands sup-
ported a significantly higher number of grassland-breeding SCN 
compared to croplands (∆ = 2.33, p < 0.01, t = 4.72, 95% confi-
dence interval: 1.06–3.60; Figure  S3). When we compared the 
total avian species' richness, our results showed that an average 
of 17 more species were detected in grasslands compared to crop-
lands in 2022 (p < 0.01, t = −6.82, 95% confidence interval: 11.57–
22.59; Figure S3).

3.1  |  Focal species

The top-performing model for average weekly focal species rich-
ness was week × cover + grassland_500 + random effects (Pair, Field, 
Year; Table  3), followed by the global model (Table  S3). In the 
grassland and cropland study fields, average weekly focal species 
richness peaked during week 19 and 20 (mid-May), then gradu-
ally declined thereafter, with grassland cover at the 500 m scale 
having a significant impact on richness (p = 0.04). Predicted av-
erage weekly focal species richness followed a concave distribu-
tion, with richness peaking at 35%–45% grassland cover within 
a 500-m radius in both field types but decreasing as grassland 
cover approached 100% (Figure 2a). In contrast, grassland cover 
at the 1-km scale had no significant impact on average weekly 
focal species richness in grasslands or croplands (Figure 2b). The 
global model showed a significant relationship between the week 
of recording and both land covers when predicting focal species 
richness (p < 0.01). For the full model output for all tested models 
(see Table S3); smooth terms and diagnostic plots are provided in 
Figures S4–S9.

3.2  |  Grassland obligate species

The global model was the most parsimonious model for grass-
land breeding birds (Table  3) and the second-best model was 
week × cover + grassland_500 + random effects (Table S3). Similar to the 
focal species richness model, the top-performing model for weekly 
average grassland obligates showed peak richness during Weeks 19 
and 20 in grassland fields, while in croplands, richness peaked be-
tween Weeks 18 and 24. Grassland composition at the 500 m scale 
(p < 0.01) and 1 km scale (p = 0.01) had a significant impact on av-
erage weekly grassland breeding bird richness (Figure 2a,b). At the 
500 m scale, average weekly grassland obligate richness peaked at 
around 50% grassland cover and decreased in both field types, al-
though this relationship was more pronounced in grassland study 
fields. Whereas, at the 1 km scale, average weekly richness increased 
consistently with grassland cover, showing a clear positive relation-
ship that was again stronger in grassland study fields.

3.3  |  Habitat generalist species

For average weekly habitat generalist species richness, the top-
performing model was week × cover + grassland_1 + random effects 
(Table 3), which showed a significant relationship between richness 
and grassland composition at the 1 km scale (p < 0.01). The next 
best model was the week × cover + grassland_500 + random effects 
(Table  S3), which also showed a significant relationship between 
grassland composition at the 500 m scale (p < 0.01). Predicted aver-
age weekly habitat generalist's species richness declined at approxi-
mately 40% grassland cover at the 500 m scale (Figure  2a) with a 
similar negative relationship observed at the 1 km scale (Figure 2b).

Except for the null model, all the best-performing models for 
average weekly focal species richness, average weekly grassland 
obligate species richness and average weekly habitat generalist spe-
cies richness exhibited high R2 values (mean = 0.61, 0.60 and 0.56, 
respectively; Table S3). Based on model-averaged predictions, the 
week of recording, in combination with land cover and grassland 
composition at both the 500 m and 1 km scales, was an important 
predictor of focal species richness, grassland obligates and habitat 
generalists.

TA B L E  3 Top-performing models associated with the average weekly focal species richness, grassland breeding bird species richness and 
habitat generalist species richness in southwestern Nebraska, 2022–2023.

Avian response 
variable Model AICc Adjusted wi R2

Focal species 
richness

s(week × cover)*** + s(grassland_500)* + s(pair(“re”)) + s(field(“re”))*** + s(year(“re”)) 5419.38 0.27 0.70

Grassland obligate 
species richness

s(week × cover)*** + s(grassland_500)*** + s(grassland_1)* + s(pair(“re”)) + s(field(“re”))** + s(year(“re”)) 4122.25 0.42 0.69

Habitat generalist 
species richness

s(week × cover) *** + s(grassland_1)** + s(pair(“re”))*** + s(field(“re”)) + s(year(“re”)) 3603.15 0.27 0.61

Note: Asterisks denote significance of variables in a model (* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001).
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8 of 14  |     SCHUSTER et al.

The interaction between land cover and week of recording 
was significant in all top-performing models for each of the three 
avian response variables. Our post-hoc Tukey HSD test revealed 
temporal variations in average weekly focal species richness, 
with some weeks showing significantly higher richness in grass-
lands, while other weeks exhibited greater richness in croplands 
(Figure  3a). Overall, average weekly grassland obligate species 
richness was significantly higher in grasslands throughout most of 
the sampling period, except during mid-March through early April 
(Figure 3b). Average weekly habitat generalist richness was higher 
in croplands for the bulk of the season (Figure 3c). Both grassland 
obligate and habitat generalist average weekly species richness 
shifted between grasslands and croplands during Week 16 (mid-
April). To explain this variability in the difference in richness, we 
analysed the timeframe each species was detected on the study 
sites across complete days. The timeline for grassland obligations 
shows that the two species that were present during the early 
weeks were Horned Lark and Western Meadowlark (Figure S10). 

Arrival and departure dates for habitat generalists were highly 
variable across the sampling years (Figure S11).

4  |  DISCUSSION

Rising human populations, growing energy demands and volatile pe-
troleum markets, coupled with risks associated with climate change, 
have sparked increasing interest in alternatives to fossil fuels. 
Currently, corn is the predominant feedstock for biofuels; however, 
perennial grasses, such as switchgrass, have been identified as a 
promising alternative due to their capacity to maintain soil structure, 
their high yield and nutrient efficiency, and their low requirements 
for chemical, energy and water inputs (Fletcher Jr et  al.,  2011). 
Perennial energy crops have the capacity to increase biodiversity at 
multiple levels, including positively impacting the diversity of breed-
ing bird populations (Werling et al., 2014). The suitability of poten-
tial bioenergy grasslands to provide habitat for declining grassland 

F I G U R E  2 Relative proportion (predicted richness/total species) in species richness for focal species (n = 27), grassland obligates (n = 11) 
and habitat generalists (n = 8) at both scales, with data separated by whether the study field was in grassland or croplands in southwestern 
Nebraska, 2022–2023. Panel (a) represents species richness for all groups at the 500 m scale and panel (b) represents species richness for all 
groups at the 1 km scale.
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bird species has been studied using traditional methods (Blank 
et  al.,  2014; Robertson et  al.,  2011; Roth et  al.,  2005). However, 
the prolonged impact of these grassland fields compared to mono-
culture crops throughout both the migration and breeding seasons 
has been severely underdeveloped. We compared avian population 
metrics between row-crop and low-diversity CRP fields, suitable for 
conversion to bioenergy grasslands, using PAM.

Compared to row-crop agriculture, perennial grasslands sup-
ported greater richness of grassland-breeding SCN and total spe-
cies richness (Figure S3), which coincides with previous research 
(Blank et  al., 2014). We also assessed the impact that grassland 
habitat in the surrounding landscape has on average weekly focal 
species, grassland obligate species and habitat generalist species 
richness in these fields. Based on model averaging, grassland com-
position in the surrounding landscape did have significant impacts 
on each of these avian groups. Moderate amounts (20–50%) of 
grassland habitat in the surrounding landscape at the 500 m scale 
positively affected focal species and grassland obligates in both 
grassland and cropland study fields, with the highest richness 
of grassland obligates observed in grassland fields that had ap-
proximately 50% grassland cover within this 500 m area. Further, 

average weekly grassland obligate species richness had a clear 
positive relationship with grassland composition at the 1 km scale. 
Whereas, increasing grassland habitat within 500 m and 1 km of 
the study sites had a clear negative impact on habitat generalists. 
Given the negative correlation between cropland and grassland 
composition at both scales (r > 0.7), habitat generalist species may 
be less impacted by the expansion of row-crop agriculture rela-
tive to grassland obligates and SCN. Our analysis indicated that 
grassland composition at smaller spatial scales positively impacts 
average weekly focal species and grassland obligate species rich-
ness up to a certain threshold. In contrast, at larger spatial scales, 
more grassland habitat is consistently better for grassland special-
ist species. Wildlife responds differently to habitat composition 
depending on spatial scales. Specifically, local habitat heteroge-
neity may support a broader array of avian species, while greater 
grassland availability at larger scales benefits grassland specialists. 
Therefore, integrating perennial bioenergy grasslands on marginal 
lands adjacent to row-crops would enhance ecological function in 
agricultural landscapes (Werling et  al.,  2014) by expanding total 
grassland cover at broader scales while maintaining landscape di-
versity. Intertwining grassland habitat into agricultural landscapes 

F I G U R E  3 Difference in average weekly richness between each land cover type for focal species richness, grassland obligates and habitat 
generalists. Yellow bars represent higher richness in perennial grasslands and black bars represent higher richness in croplands. Asterisk 
denotes a significant difference (p ≤ 0.05) between the two land types based on the post-hoc Tukey HSD test. Week 11 corresponds to 
mid-March. Panel (a) represents focal species, panel (b) represents grassland obligates speciess, and panel (c) represents habitat generalist 
species richness.
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10 of 14  |     SCHUSTER et al.

to create connections between existing grassland areas not only 
expands the overall grassland habitat but also provides significant 
benefits to area-sensitive avian species (Blank et al., 2014, 2016), 
which includes many grassland birds.

One possible explanation for the concave relationship be-
tween grassland composition and focal species richness, as well 
as grassland obligates at the 500-m scale, could be the ambiguous 
ecological advantage of irrigation ponding and the availability of 
water in croplands. This could benefit grassland birds in a histor-
ically arid region, particularly considering that Hayes County had 
42,738 acres of farmland irrigated in 2022 (National Agricultural 
Statistics Service,  2022). Research related to birds' responses 
to agricultural irrigation is scarce (Cabodevilla et  al.,  2022), but 
it has been suggested that while irrigation can positively impact 
species richness on a small scale, it may also negatively affect 
bird communities by replacing specialist species with generalists 
(Giralt et al., 2021). At the 500 m scale, focal species and grassland 
specialists may be taking advantage of water availability at these 
sites. However, an increase in irrigated cropland area in this re-
gion would likely boost the presence of habitat generalist species 
due to the negative correlation between grassland and cropland 
composition. Our findings align with previous research, suggesting 
that water availability from irrigation can offer localized benefits 
to avian communities. The expansion of irrigated cropland at the 
landscape scale would be detrimental to grassland obligate com-
munities, as it replaces the grasslands with habitat that would sup-
port habitat generalist species. Non-irrigated perennial grasslands 
near irrigated cropland, on the other hand, could support a wider 
diversity of avian species within agroecosystems.

Our PAM framework allowed us to explore temporal patterns in 
average weekly avian species richness between two distinct agricul-
tural land uses. Overall, average weekly focal species richness did 
not temporally differ between the two land uses, with focal species 
richness being significantly higher in grasslands during some weeks 
and greater in croplands during others (Figure 3a). Conversely, grass-
land obligates had higher richness in perennial grasslands for most 
of the sampling season (Figure 3b). This aligns with previous studies, 
which also found that grassland obligate species may benefit most 
from the inclusion of perennial grasslands, such as switchgrass, as 
opposed to more generalist species (LaGory et al., 2024; Robertson 
et  al.,  2011). Habitat generalists exhibited higher species richness 
throughout most of the sampled season in croplands, solidifying 
their ability to exploit non-native habitat (Stanton et al., 2018). The 
temporal analysis revealed seasonal habitat shifts in both habitat 
generalist and grassland obligate species in early to mid-April, which 
may be linked to migration timing, breeding, or habitat availability. 
Notably, candidate bioenergy feedstocks have been shown to sup-
port avian populations during breeding (Blank et al., 2014) and mi-
gratory seasons (Robertson et al., 2012). Further research is needed 
to understand how the timing of management strategies, such as 
harvesting and chemical applications, in both traditional row-crops 
and bioenergy grasslands may influence the value of these systems 
to bird communities across seasons.

Our inclusion of non-monoculture grassland fields, rather than 
switchgrass or other bioenergy grassland plantings, may have in-
fluenced the applicability of our results. Birds are attracted to bio-
energy grasslands that feature higher plant species richness and 
greater abundance of forbs compared to monoculture grass fields 
(Blank et al., 2014). We used low-diversity CRP grasslands as proxies 
for grasslands dedicated to bioenergy production due to the lim-
ited availability of larger, dedicated bioenergy plots, which are typ-
ically confined to small agronomic research areas in Nebraska (see 
Mitchell et al., 2008). As such, our results are more applicable for 
bioenergy grassland designs that incorporate small amounts of plant 
species diversity rather than monoculture grasslands. Feedstocks 
with higher plant diversity may have lower conversion potential and 
profitability than monoculture feedstocks (Griffith et al., 2011). This 
leads to management practices that prioritize increased grass cover, 
structural uniformity, and reduced plant diversity, which could po-
tentially impact avian use of these grasslands. Incorporating plant 
diversity into bioenergy grasslands could facilitate the coexistence 
of avian populations and bioenergy production, but the threshold at 
which plant species diversity could significantly reduce conversion 
potential must be carefully considered.

Our analysis included several species that have not been pre-
viously examined in studies assessing the habitat value of bioen-
ergy crops. We included two species that are Tier 1 at-risk species 
in southwestern Nebraska (i.e. Bell's Vireo and Burrowing Owl; 
Bomberger-Brown et  al., 2012) and Common Nighthawk. We also 
included and classified Western Kingbird (Tyrannus verticalis) as a 
grassland obligate species of interest, which may not be applicable 
to other environments. In Nebraska, this species migrates to breed 
and selects habitats differently across spatial scales, often favouring 
areas with widely spaced trees and substantial grass cover (Bergin, 
1992). As an insectivore, the Western Kingbird may benefit from in-
creased prey availability in switchgrass or other perennial grasslands 
(Werling et al., 2014), which is another reason we classified this spe-
cies as a grassland obligate in the region. The biome classification of 
our focal species could have influenced our results, as these species 
may respond differently to bioenergy production depending on the 
landscape.

PAM offered a more comprehensive evaluation of avian oc-
cupancy of perennial grasslands, enabling a deeper comparison 
of this land use with croplands over an extended period. LaGory 
et al.  (2024) also highlighted the benefits of using PAM over point 
counts, as it enabled researchers to assess year-to-year variation in 
bird detection, offering valuable insight into how switchgrass ma-
turity may influence avian use. The data collection standardization 
and data capacity available with PAM, similarly, allowed for the 
documentation of weekly variations in focal species populations 
in grassland and croplands. The ability to sample SCN, often over-
looked during point count surveys, provided the opportunity to bet-
ter assess habitat use by these threatened species throughout their 
annual cycle. Broader temporal and geographical sampling, along 
with reduced observer bias and cost-effectiveness, are key advan-
tages of PAM, making it a valuable method for inclusion in ecological 
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research (Sugai et al., 2019). One overlooked benefit of PAM is that 
it enables enhanced sampling in rural areas that are regularly under-
represented in traditional monitoring efforts, due to their low pop-
ulation density (similar to McGovern et al., 2024). Sampling in rural 
areas with low population density presents logistical and safety chal-
lenges, such as difficulty finding trained personnel and increased risk 
to technicians working alone in remote locations without immediate 
support in case of an emergency. The application of PAM in rural 
agricultural landscapes could enhance our understanding of how mi-
gratory avian species utilize various bioenergy crops and other hab-
itats, while also offering insights into how these patterns may shift 
under future bioeconomic scenarios.

There are some limitations to this technology that should be 
considered, such as technical malfunctions in the ARU technology 
resulting in the loss of acoustic data. Several other researchers have 
come across other technological malfunctions or storage-related 
failures that have impacted data availability (Dixon et al., 2023; Ware 
et al., 2023; Wightman et al., 2022). Anticipating potential data loss 
at various stages of PAM is essential for the success of research ap-
plications. Another limitation is the lack of analysis procedures to 
estimate avian density or population metrics from sound record-
ings without additional sampling (i.e. point count surveys; Pérez-
Granados & Traba, 2021). While our results revealed differences in 
species richness, it is possible that abundance estimates might have 
yielded different outcomes, potentially offering a more nuanced un-
derstanding of avian populations in grasslands and croplands. Future 
research should focus on testing various approaches that can reduce 
bias and resource use, with the aim of improving bird density esti-
mates from acoustic recordings.

The conversion of monoculture row-crops to switchgrass has 
demonstrated positive impacts on avian populations through sce-
nario planning. However, these studies lacked field evaluations of 
grassland bird communities (Uden et al., 2015). Our findings provide 
support for the inclusion of perennial grasslands, potentially used for 
bioenergy production in intensified cultivated landscapes, with the 
goal of benefiting avian populations. Most notably, including peren-
nial grasslands on marginal acres of cropland could benefit SCN that 
breed in grasslands (Robertson et  al.,  2012). However, grasslands 
dedicated to bioenergy production may lack the vegetative diversity 
necessary to support avian populations. As a result, replacing highly 
diverse CRP fields with monoculture bioenergy grasslands, without 
additions of other grassland habitat in the landscape, could have det-
rimental consequences for bird populations (Uden et al., 2015). By 
comparing avian communities in grasslands and adjacent croplands, 
our results demonstrate the season-long benefits of integrating these 
bioenergy grasslands into agricultural systems. Developing and uti-
lizing a diverse range of feedstocks is important to sustainably meet 
biorefinery supply demands, but this can only be achieved through 
policies and strategies that prioritize environmental sustainability and 
benefits (Long et al., 2015). Incorporating switchgrass and other pe-
rennial energy crops as novel feedstocks, alongside traditional crops 
like corn, will enable the comprehensive advancement of a viable bio-
economy without further degrading avian populations.

5  |  CONCLUSION

Incorporating bioenergy grasslands into agricultural landscapes 
could benefit avian populations, especially if these grasslands 
strategically replace intensively cultivated annual row crops such 
as corn. This bioenergy conversion could be particularly beneficial 
to SCN and other grassland-breeding avian species. PAM allowed 
us to uncover important temporal relationships in avian community 
responses to this land use conversion scenario. As the bioeconomy 
continues to evolve and reshape agricultural landscapes, it is 
essential to consider the environmental benefits of these changes to 
ensure long-term sustainability.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table  S1. Program type and description of Conservation Reserve 
Program (CRP) enrollment for each grassland study site as well as 
dominant vegetation at each site.
Table S2. The three-hypothesis driven models.
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Table  S3. Full model output for average weekly focal species, 
grassland obligate species and habitat generalist species richness.
Figure S1. Distribution of complete days of recordings each week by 
pair which include both a grassland and cropland site with full (8 h) 
of recordings.
Figure S2. Bar graph depicting composition of grasslands and 
croplands in the surrounding landscape around acoustic monitoring 
locations, measured at two spatial scales: 500 and 1 km.
Figure S3. Boxplot results from two-paired Student's t-tests 
comparing total species richness and species of conservation need 
(SCN) richness between croplands and grasslands.
Figure S4. Smooth term plots for top-performing model for 
predicting average weekly focal species richness in southwestern 
Nebraska, 2022–2023.
Figure S5. Diagnostic plots for top-performing model for average 
weekly focal species richness.
Figure S6. Smooth term plots for top-performing model for 
predicting average weekly grassland obligate species richness in 
southwestern Nebraska, 2022–2023.
Figure S7. Diagnostic plots for top-performing model for average 
weekly grassland obligate species richness.
Figure S8. Smooth term plots for top-performing model for 
predicting average weekly habitat generalist species richness in 
southwestern Nebraska, 2022–2023.

Figure S9. Diagnostic plots for top-performing model for average 
weekly grassland obligate species richness.
Figure S10. Timeline of the first and last detections of grassland 
obligate focal species in 2022–2023 across both grassland and 
cropland habitats. Green horizontal line represents ARU deployment 
and the red horizontal line represents ARU removal during both 
years.
Figure S11. Timeline of the first and last detections of habitat 
generalists focal species in 2022–2023 across both grassland and 
cropland habitats. Green horizontal line represents ARU deployment 
and the red horizontal line represents ARU removal during both 
years.
Figure S12. Acoustic monitor installed in a grassland field.
Figure S13. Acoustic monitor installed in a cropland field.
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